skip to main content


Search for: All records

Creators/Authors contains: "Whitcomb, Kyle M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Large introductory lecture courses are frequently post-secondary students’ first formal interaction with science, technology, engineering, and mathematics (STEM) disciplines. Grade outcomes in these courses are often disparate across student populations, which, in turn, has implications for student retention. This study positions such disparities as a manifestation of systemic inequities along the dimensions of sex, race/ethnicity, income, and first-generation status and investigates the extent to which they are similar across peer institutions.

    Results

    We examined grade outcomes in a selected set of early STEM courses across six large, public, research-intensive universities in the United States over ten years. In this sample of more than 200,000 STEM course enrollments, we find that course grade benefits increase significantly with the number of systemic advantages students possess at all six institutions. The observed trends in academic outcomes versus advantage are strikingly similar across universities despite the fact that we did not control for differences in grading practices, contexts, and instructor and student populations. The findings are concerning given that these courses are often students’ first post-secondary STEM experiences.

    Conclusions

    STEM course grades are typically lower than those in other disciplines; students taking them often pay grade penalties. The systemic advantages some student groups experience are correlated with significant reductions in these grade penalties at all six institutions. The consistency of these findings across institutions and courses supports the claim that inequities in STEM education are a systemic problem, driven by factors that go beyond specific courses or individual institutions. Our work provides a basis for the exploration of contexts where inequities are exacerbated or reduced and can be used to advocate for structural change within STEM education. To cultivate more equitable learning environments, we must reckon with how pervasive structural barriers in STEM courses negatively shape the experiences of marginalized students.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    Analysis of institutional data for physics majors showing predictive relationships between required mathematics and physics courses in various years is important for contemplating how the courses build on each other and whether there is need to make changes to the curriculum for the majors to strengthen these relationships. We used 15 years of institutional data at a US-based large research university to investigate how introductory physics and mathematics courses predict male and female physics majors’ performance on required advanced physics and mathematics courses. We used structure equation modeling (SEM) to investigate these predictive relationships and find that among introductory and advanced physics and mathematics courses, there are gender differences in performance in favor of male students only in the introductory physics courses after controlling for high school GPA. We found that a measurement invariance fully holds in a multi-group SEM by gender, so it was possible to carry out analysis with gender mediated by introductory physics and high school GPA. Moreover, we find that these introductory physics courses that have gender differences do not predict performance in advanced physics courses. In other words, students could be using invalid data about their introductory physics performance to make their decision about whether physics is the right field for them to pursue, and those invalid data in introductory physics favor male students. Also, introductory mathematics courses predict performance in advanced mathematics courses which in turn predict performance in advanced physics courses. Furthermore, apart from the introductory physics courses that do not predict performance in future physics courses, there is a strong predictive relationship between the sophomore, junior and senior level physics courses.

     
    more » « less
  4. We compared students' learning behavior when completing identical online calculus-based physics homework assignments organized in two ways. One was designed for mastery learning where content is divided into smaller units, and students are required to attempt the assessment once before accessing the content. Students can proceed to the next unit after passing the assessment either before or after studying the content. The second is a conventional design in which students first study a set of instructional materials equivalent to several mastery units then complete multiple assessment problems at once. Our major findings are: 1. in the mastery condition, students solved more problems correctly either immediately after studying the instructional content, or on attempts before accessing the instructional content; 2. for students who solved similar numbers of problems correctly, the mastery condition students spent significantly less time studying compared to the traditional condition students; and 3. students who did not pass mastery units on their initial assessment attempts spent similar amounts of time studying as traditional condition students. 
    more » « less